Therapeutic Actions The Presence of Plants

NCBI pubmed

High-level expression and enrichment of norovirus virus-like particles in plants using modified geminiviral vectors.

Related Articles High-level expression and enrichment of norovirus virus-like particles in plants using modified geminiviral vectors. Protein Expr Purif. 2018 Jun 14;: Authors: Diamos AG, Mason HS Abstract Recombinant virus-like particles (VLPs) are proven to be safe and effective vaccine candidates. We have previously described a plant-based recombinant protein expression system based on agroinfiltration of a replicating vector derived from the geminivirus bean yellow dwarf virus (BeYDV). The system has been systematically optimized to improve expression and reduce cell death in Nicotiana benthamiana leaves. Using these modifications, we show that VLPs derived from genotype GII.4 norovirus, the leading cause of acute gastroenteritis worldwide, can be produced at >1 mg/g leaf fresh weight (LFW), over three times the highest level ever reported in plant-based systems. We also produced norovirus GI VLPs at 2.3 mg/g LFW. Treatment of VLP-containing crude leaf extracts with acid, detergent, or heat enhanced recovery and allowed selective enrichment of norovirus VLPs. Optimal treatment conditions allowed removal of >90% of endogenous plant proteins without any loss of norovirus VLPs. Selective enrichment of hepatitis B core antigen (HBcAg) VLPs by acid treatment was also demonstrated, with some losses in yield that were partially mitigated in the presence of detergent. Sedimentation analysis confirmed that acid and detergent did not inhibit proper assembly of norovirus VLPs, although heat treatment had a small negative effect. These results demonstrate that milligram quantities of norovirus VLPs can be obtained and highly enriched in a matter of days from a single plant leaf using the BeYDV plant expression system. PMID: 29908914 [PubMed - as supplied by publisher]

Hormonally active phytochemicals from macroalgae: a largely untapped source of ligands to deorphanize nuclear receptors in emerging marine animal models.

Related Articles Hormonally active phytochemicals from macroalgae: a largely untapped source of ligands to deorphanize nuclear receptors in emerging marine animal models. Gen Comp Endocrinol. 2018 Jun 14;: Authors: Markov GV, Girard J, Laudet V, Leblanc C Abstract Hormonally active phytochemicals (HAPs) are signaling molecules produced by plants that alter hormonal signaling in animals, due to consumption or environmental exposure. To date, HAPs have been investigated mainly in terrestrial ecosystems. To gain a full understanding of the origin and evolution of plant-animal interactions, it is necessary also to study these interactions in the marine environment, where the major photosynthetic lineages are very distant from the terrestrial plants. Here we focus on chemicals from red and brown macroalgae and point out their potential role as modulators of the endocrine system of aquatic animals through nuclear hormone receptors. We show that, regarding steroids and oxylipins, there are already some candidates available for further functional investigations of ligand-receptor interactions. Furthermore, several carotenoids, produced by cyanobacteria provide candidates that could be investigated with respect to their presence in macroalgae. Finally, regarding halogenated compounds, it is not clear yet which molecules could bridge the gap to explain the transition from lipid sensing to thyroid hormone high affinity binding among nuclear receptors. PMID: 29908834 [PubMed - as supplied by publisher]

Rapid detection and characterization of postpasteurization contaminants in pasteurized fluid milk.

Related Articles Rapid detection and characterization of postpasteurization contaminants in pasteurized fluid milk. J Dairy Sci. 2018 Jun 13;: Authors: Alles AA, Wiedmann M, Martin NH Abstract Microbial spoilage of pasteurized fluid milk is typically due to either (1) postpasteurization contamination (PPC) with psychrotolerant gram-negative bacteria (predominantly Pseudomonas) or (2) growth of psychrotolerant sporeformers (e.g., Paenibacillus) that have the ability to survive pasteurization when present as spores in raw milk, and to subsequently grow at refrigeration temperatures. While fluid milk quality has improved over the last several decades, continued reduction of PPC is hampered by the lack of rapid, sensitive, and specific methods that allow for detection of PPC in fluid milk, with fluid milk processors still often using time-consuming methods (e.g., Moseley keeping quality test). The goal of this project was to utilize a set of commercial fluid milk samples that are characterized by a mixture of samples with PPC due to psychrotolerant gram-negative bacteria and samples with presence and growth of psychrotolerant sporeforming bacteria to evaluate different approaches for rapid detection of PPC. Comprehensive microbiological shelf-life characterization of 105 pasteurized fluid milk samples obtained from 20 dairy processing plants showed that 60/105 samples reached bacterial counts >20,000 cfu/mL over the shelf-life due to PPC with gram-negative bacteria. Among these 60 samples with evidence of gram-negative PPC spoilage over the shelf-life, 100% (60/60) showed evidence of contamination with noncoliform, non-Enterobacteriaceae (EB) gram-negative bacteria (e.g., Pseudomonas), 20% (12/60) showed evidence of contamination with coliforms, and 7% (4/60) showed evidence of contamination with noncoliform EB. Among the remaining 45 samples, 28 showed levels of gram-positive bacteria above 20,000 cfu/mL and the remaining 17 samples did not exceed 20,000 cfu/mL over the shelf-life. Evaluation of the same set of 105 samples using 6 different approaches {all possible combinations of 2 different enrichment protocols (13°C or 21°C for 18 h) and 3 different plating media [crystal violet tetrazolium agar, EB Petrifilm (3M, St. Paul, MN), and Coliform Petrifilm]} showed that enrichment at 21°C for 18 h, followed by plating on crystal violet tetrazolium agar provided for the most sensitive, accelerated detection of samples that reached >20,000 cfu/mL due to PPC with psychrotolerant gram-negatives (70% sensitivity). These results show that tests still required and traditionally used in the dairy industry (e.g., coliform testing) are not suitable for monitoring for PPC. Rather, approaches that allow for detection of all gram-negative bacteria are essential for improved detection of PPC in fluid milk. PMID: 29908800 [PubMed - as supplied by publisher]