Therapeutic Actions Ozone Therapy

NCBI pubmed

Air Pollution as a Potential Determinant of Rheumatoid Arthritis: A Population-based Cohort Study in Taiwan.

Related Articles Air Pollution as a Potential Determinant of Rheumatoid Arthritis: A Population-based Cohort Study in Taiwan. Epidemiology. 2017 Oct;28 Suppl 1:S54-S59 Authors: Jung CR, Hsieh HY, Hwang BF Abstract BACKGROUND: Limited studies have explored the relationship between air pollution and rheumatoid arthritis (RA), with the results being somewhat inconsistent. METHODS: This was a retrospective cohort study that included 322,301 subjects aged 30-50 years, selected from the National Health Insurance Research Database in Taiwan, were followed from 2001 to 2010. We used a time-dependent extended Cox model and incorporated time-dependent variables to estimate the associations between the annual mean concentrations of air pollutants with RA, including carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), particles with an aerodynamic diameter less than 10 μm (PM10), and sulfur dioxide (SO2), and reported the hazard ratio (HR) and 95% confidence interval (CI). RESULTS: Newly diagnosed RA was positively associated with a 100-ppb increase in CO (adjusted HR = 1.17 [95% CI = 1.16, 1.18]), a 10-ppb increase in NO2 (1.54 [1.45, 1.64]), a 10-ppb increase in O3 (1.37 [1.33, 1.41]), and a 1 ppb in SO2 (1.02 [1.00, 1.04]). There was no association between a 10-μg/m increase in PM10 and RA (1.02 [0.99, 1.05]). CONCLUSIONS: Our finding suggests that O3 and traffic-related air pollutants (CO and NO2) may be positively associated with incident RA. This is an important finding given that many individuals are exposed to similar levels of O3 and NO2 globally. PMID: 29028676 [PubMed - indexed for MEDLINE]

Management of Risks From Water and Ice From Ice Machines for the Very Immunocompromised Host: A Process Improvement Project Prompted by an Outbreak of Rapidly Growing Mycobacteria on a Pediatric Hematopoietic Stem Cell Transplant (Hsct) Unit.

Related Articles Management of Risks From Water and Ice From Ice Machines for the Very Immunocompromised Host: A Process Improvement Project Prompted by an Outbreak of Rapidly Growing Mycobacteria on a Pediatric Hematopoietic Stem Cell Transplant (Hsct) Unit. Infect Control Hosp Epidemiol. 2017 Jul;38(7):792-800 Authors: Guspiel A, Menk J, Streifel A, Messinger K, Wagner J, Ferrieri P, Kline S Abstract BACKGROUND In 2011, pediatric hematopoietic stem cell transplant (HSCT) patients were moved from an older hospital to a new children's hospital. To minimize bacterial growth in the new hospital's water during construction, the plumbing system was flushed and disinfected before occupancy. However, 6 months after occupancy, an increased incidence of rapidly growing mycobacteria (RGM) was detected in clinical cultures. Over 10 months, 15 pediatric HSCT patients were infected, while no pediatric HSCT patients had been infected in the preceding 12 months. OBJECTIVE To determine the cause of the outbreak and to interrupt patient acquisition of RGM. METHODS Water samples were collected from water entering the hospital and from drinking water and ice machines (DWIMs) from the old and new hospitals. Total heterotrophic plate counts (HPCs, CFU/mL) of water were undertaken, and select isolates were identified as RGM. RESULTS The cause of the outbreak was increased bacterial levels in the water (including RGM) in the DWIMs in the new (2011) hospital. Tests revealed higher HPCs in drinking water and ice from the DWIMs in the new hospital than in the DWIMs in the old hospital. Ultimately, HPCs were reduced by several different interventions. CONCLUSION In response to an RGM outbreak, HSCT patients were banned from ingesting DWIM ice and water and bottled water was provided. Since this interverntion 4 years ago, no additional RGM isolates have been identified in HSCT patient cultures. Our measures to reduce HPCs to goal levels in drinking water from DWIMs were successful, but the HPCs for ice have not consistently reached the goal of <500 CFU/mL. Infect Control Hosp Epidemiol 2017;38:792-800. PMID: 28532525 [PubMed - indexed for MEDLINE]