CYBERMED LIFE - ORGANIC  & NATURAL LIVING

Cybermedlife - Therapeutic Actions Stem Cell Transplant - Bone Marrow Derived

One-Year Safety Analysis of the COMPARE-AMI Trial: Comparison of Intracoronary Injection of CD133 Bone Marrow Stem Cells to Placebo in Patients after Acute Myocardial Infarction and Left Ventricular Dysfunction. 📎

Abstract Title: One-Year Safety Analysis of the COMPARE-AMI Trial: Comparison of Intracoronary Injection of CD133 Bone Marrow Stem Cells to Placebo in Patients after Acute Myocardial Infarction and Left Ventricular Dysfunction. Abstract Source: Bone Marrow Res. 2011 ;2011:385124. Epub 2011 Feb 27. PMID: 22046562 Abstract Author(s): Samer Mansour, Denis-Claude Roy, Vincent Bouchard, Louis Mathieu Stevens, Francois Gobeil, Alain Rivard, Guy Leclerc, François Reeves, Nicolas Noiseux Article Affiliation: Division de Cardiologie, Département de Médecine, Centre Hospitalier de l'Université de Montréal (CHUM), 3840, Rue Saint Urbain, Montréal, Québec, Canada H2W 1T8. Abstract: Bone marrow stem cell therapy has emerged as a promising approach to improve healing of the infarcted myocardium. Despite initial excitement, recent clinical trials using non-homogenous stem cells preparations showed variable and mixed results. Selected CD133(+) hematopoietic stem cells are candidate cells with high potential. Herein, we report the one-year safety analysis on the initial 20 patients enrolled in the COMPARE-AMI trial, the first double-blind randomized controlled trial comparing the safety, efficacy, and functional effect of intracoronary injection of selected CD133(+) cells to placebo following acute myocardial infarction with persistent left ventricular dysfunction. At one year, there is no protocol-related complication to report such as death, myocardial infarction, stroke, or sustained ventricular arrhythmia. In addition, the left ventricular ejection fraction significantly improved at four months as compared to baseline and remained significantly higher at one year. These data indicate that in the setting of the COMPARE-AMI trial, the intracoronary injection of selected CD133(+) stem cells is secure and feasible in patients with left ventricle dysfunction following acute myocardial infarction. Article Published Date : Jan 01, 2011
Therapeutic Actions Cybermedlife - Therapeutic Actions Stem Cell Transplant - Bone Marrow Derived

NCBI pubmed

Bone marrow-derived epithelial cells and hair follicle stem cells contribute to development of chronic cutaneous neoplasms.

Related Articles Bone marrow-derived epithelial cells and hair follicle stem cells contribute to development of chronic cutaneous neoplasms. Nat Commun. 2018 12 13;9(1):5293 Authors: Park H, Lad S, Boland K, Johnson K, Readio N, Jin G, Asfaha S, Patterson KS, Singh A, Yang X, Londono D, Singh A, Trempus C, Gordon D, Wang TC, Morris RJ Abstract We used allogeneic bone marrow transplantation (BMT) and a mouse multistage cutaneous carcinogenesis model to probe recruitment of bone marrow-derived epithelial cells (BMDECs) in skin tumors initiated with the carcinogen, dimethylbenz[a]anthracene (DMBA), and promoted with 12-O-tetradecanolyphorbol-13-acetate (TPA). BMDECs clustered in the lesional epithelium, expressed cytokeratins, proliferated, and stratified. We detected cytokeratin induction in plastic-adherent bone marrow cells (BMCs) cultured in the presence of filter-separated keratinocytes (KCs) and bone morphogenetic protein 5 (BMP5). Lineage-depleted BMCs migrated towards High Mobility Group Box 1 (HMGB1) protein and epidermal KCs in ex vivo invasion assays. Naive female mice receiving BMTs from DMBA-treated donors developed benign and malignant lesions after TPA promotion alone. We conclude that BMDECs contribute to the development of papillomas and dysplasia, demonstrating a systemic contribution to these lesions. Furthermore, carcinogen-exposed BMCs can initiate benign and malignant lesions upon tumor promotion. Ultimately, these findings may suggest targets for treatment of non-melanoma skin cancers. PMID: 30546048 [PubMed - indexed for MEDLINE]

Current status of stem cells in cardiac repair.

Related Articles Current status of stem cells in cardiac repair. Future Cardiol. 2018 03;14(2):181-192 Authors: Henning RJ Abstract One out of every two men and one out of every three women greater than the age of 40 will experience an acute myocardial infarction (AMI) at some time during their lifetime. As more patients survive their AMIs, the incidence of congestive heart failure (CHF) is increasing. 6 million people in the USA have ischemic cardiomyopathies and CHF. The search for new and innovative treatments for patients with AMI and CHF has led to investigations and use of human embryonic stem cells, cardiac stem/progenitor cells, bone marrow-derived mononuclear cells and mesenchymal stem cells for treatment of these heart conditions. This paper reviews current investigations with human embryonic, cardiac, bone marrow and mesenchymal stem cells, and also stem cell paracrine factors and exosomes. PMID: 29405072 [PubMed - indexed for MEDLINE]
Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok Decline