CYBERMED LIFE - ORGANIC  & NATURAL LIVING

Napping

A nap is a short period of sleep, typically taken during daytime hours as an adjunct to the usual nocturnal sleep period. Naps are most often taken as a response to drowsiness during waking hours. A nap is a form of biphasic or polyphasic sleep, where the latter terms also include longer periods of sleep in addition to one single period. Cultural attitudes toward napping during the work day vary. In many Western cultures, children and the elderly are expected to nap during the day and are provided with designated periods and locations in which to do so. In these same cultures, most working adults are not expected to sleep during the day and napping on the job is widely considered unacceptable. Other cultures (especially those in hot climates) serve their largest meals at midday, with allowance for a nap period (siesta) afterwards before returning to work.

Benefits

Napping is physiologically and psychologically beneficial. Napping for 20 minutes can help refresh the mind, improve overall alertness, boost mood and increase productivity. Napping may benefit the heart. In a six-year study of Greek adults, researchers found that men who took naps at least three times a week had a 37 percent lower risk of heart-related death.

For years, scientists have been investigating the benefits of napping, including the 30-minute nap as well as sleep durations of 1–2 hours. Performance across a wide range of cognitive processes has been tested. Studies demonstrate that naps are as good as a night of sleep for some types of memory tasks. A NASA study led by David F. Dinges, professor at the University of Pennsylvania School of Medicine, found that naps can improve certain memory functions and that long naps are more effective than short ones. In that NASA study, volunteers spent several days living on one of 18 different sleep schedules, all in a laboratory setting. To measure the effectiveness of the naps, tests probing memory, alertness, response time, and other cognitive skills were used.

The National Institute of Mental Health funded a team of doctors, led by Alan Hobson, Robert Stickgold, and colleagues at Harvard University for a study which showed that a midday nap reverses information overload. Reporting in Nature Neuroscience, Sara Mednick, Stickgold and colleagues also demonstrated that, in some cases, a 1-hour nap could even boost performance to an individual's top levels. The NIMH team wrote: "The bottom line is: we should stop feeling guilty about taking that 'power nap' at work."

Cardiovascular benefits of napping, siesta or daytime sleep

The siesta habit has recently been associated with a 37% reduction in coronary mortality, possibly due to reduced cardiovascular stress mediated by daytime sleep (Naska et al., 2007). Nevertheless, epidemiological studies on the relations between cardiovascular health and siesta have led to conflicting conclusions, possibly because of poor control of moderator variables, such as physical activity. It is possible that people who take a siesta have different physical activity habits, e.g. waking earlier and scheduling more activity during the morning. Such differences in physical activity may mediate different 24-hour profiles in cardiovascular function. Even if such effects of physical activity can be discounted for explaining the relationship between siesta and cardiovascular health, it is still unknown whether it is the daytime nap itself, a supine posture or the expectancy of a nap that is the most important factor. It was recently suggested that a short nap can reduce stress and blood pressure (BP), with the main changes in BP occurring between the time of lights off and the onset of stage 1 (Zaregarizi, M. 2007 & 2012).

Zaregarizi and his team have concluded that the acute time of falling asleep was where beneficial cardiovascular changes take place. This study has indicated that a large decline in blood pressure occurs during the daytime sleep-onset period only when sleep is expected; however, when subjects rest in a supine position, the same reduction in blood pressure is not observed. This blood pressure reduction may be associated with the lower coronary mortality rates seen in Mediterranean and Latin American populations where siestas are common. Zaregarizi assessed cardiovascular function (blood pressure, heart rate, and measurements of blood vessel dilation) while nine healthy volunteers, 34 years of age on average, spent an hour standing quietly; reclining at rest but not sleeping; or reclining to nap. All participants were restricted to 4 hours of sleep on the night prior to each of the sleep laboratory tests. During three daytime naps, he noted significant reductions in blood pressure and heart rate. By contrast, the team did not observe changes in cardiovascular function while the participants were standing or reclining at rest.

These findings also show that the greatest decline in blood pressure occurs between lights-off and onset of daytime sleep itself. During this sleep period, which lasted 9.7 minutes on average, blood pressure decreased, while blood vessel dilation increased by more than 9 percent.

"There is little change in blood pressure once a subject is actually asleep," Zaregarizi noted, and he found minor changes in blood vessel dilation during sleep (Zaregarizi, M. 2007 & 2012).

  • Benefits of napping and an extended duration of recovery sleep on alertness and immune cells after acute sleep restriction.

    facebook Share on Facebook
    Abstract Title:

    Benefits of napping and an extended duration of recovery sleep on alertness and immune cells after acute sleep restriction.

    Abstract Source:

    Brain Behav Immun. 2011 Jan ;25(1):16-24. Epub 2010 Aug 8. PMID: 20699115

    Abstract Author(s):

    Brice Faraut, Karim Zouaoui Boudjeltia, Michal Dyzma, Alexandre Rousseau, Elodie David, Patricia Stenuit, Thierry Franck, Pierre Van Antwerpen, Michel Vanhaeverbeek, Myriam Kerkhofs

    Article Affiliation:

    Sleep Laboratory, (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium.

    Abstract:

    Understanding the interactions between sleep and the immune system may offer insight into why short sleep duration has been linked to negative health outcomes. We, therefore, investigated the effects of napping and extended recovery sleep after sleep restriction on the immune and inflammatory systems and sleepiness. After a baseline night, healthy young men slept for a 2-h night followed by either a standard 8-h recovery night (n=12), a 30-min nap (at 1 p.m.) in addition to an 8-h recovery night (n=10), or a 10-h extended recovery night (n=9). A control group slept 3 consecutive 8-h nights (n=9). Subjects underwent continuous electroencephalogram polysomnography and blood was sampled every day at 7 a.m. Leukocytes, inflammatory and atherogenesis biomarkers (high-sensitivity C-reactive protein, interleukin-8, myeloperoxidase, fibrinogen and apolipoproteins ApoB/ApoA), sleep patterns and sleepiness were investigated. All parameters remained unchanged in the control group. After sleep restriction, leukocyte and - among leukocyte subsets - neutrophil counts were increased, an effect that persisted after the 8-h recovery sleep, but, in subjects who had a nap or a 10-h recovery sleep, these values returned nearly to baseline. Inflammatory and atherogenesis biomarkers were unchanged except for higher myeloperoxidase levels after sleep restriction. The increased sleepiness after sleep restriction was reversed better in the nap and extended sleep recovery conditions. Saliva cortisol decreased immediately after the nap. Our results indicate that additional recovery sleep after sleep restriction provided by a midday nap prior to recovery sleep or a sleep extended night can improve alertness and return leukocyte counts to baseline values.

  • Daytime napping after a night of sleep loss decreases sleepiness, improves performance, and causes beneficial changes in cortisol and interleukin-6 secretion. 📎

    facebook Share on Facebook
    Abstract Title:

    Daytime napping after a night of sleep loss decreases sleepiness, improves performance, and causes beneficial changes in cortisol and interleukin-6 secretion.

    Abstract Source:

    Am J Physiol Endocrinol Metab. 2007 Jan;292(1):E253-61. Epub 2006 Aug 29. PMID: 16940468

    Abstract Author(s):

    A N Vgontzas, S Pejovic, E Zoumakis, H M Lin, E O Bixler, M Basta, J Fang, A Sarrigiannidis, G P Chrousos

    Article Affiliation:

    Penn State Univ. College of Medicine, Dept. of Psychiatry H073, 500 University Dr., Hershey, PA 17033, USA. This email address is being protected from spambots. You need JavaScript enabled to view it.

    Abstract:

    Sleep loss has been associated with increased sleepiness, decreased performance, elevations in inflammatory cytokines, and insulin resistance. Daytime napping has been promoted as a countermeasure to sleep loss. To assess the effects of a 2-h midafternoon nap following a night of sleep loss on postnap sleepiness, performance, cortisol, and IL-6, 41 young healthy individuals (20 men, 21 women) participated in a 7-day sleep deprivation experiment (4 consecutive nights followed by a night of sleep loss and 2 recovery nights). One-half of the subjects were randomly assigned to take a midafternoon nap (1400-1600) the day following the night of total sleep loss. Serial 24-h blood sampling, multiple sleep latency test (MSLT), subjective levels of sleepiness, and psychomotor vigilance task (PVT) were completed on the fourth (predeprivation) and sixth days (postdeprivation). During the nap, subjects had a significant drop in cortisol and IL-6 levels (P<0.05). After the nap they experienced significantly less sleepiness (MSLT and subjective, P<0.05) and a smaller improvement on the PVT (P<0.1). At that time, they had a significant transient increase in their cortisol levels (P<0.05). In contrast, the levels of IL-6 tended to remain decreased for approximately 8 h (P = 0.1). We conclude that a 2-h midafternoon nap improves alertness, and to a lesser degree performance, and reverses the effects of one night of sleep loss on cortisol and IL-6. The redistribution of cortisol secretion and the prolonged suppression of IL-6 secretion are beneficial, as they improve alertness and performance.

  • Napping

  • Napping

    facebook Share on Facebook

    A nap is a short period of sleep, typically taken during daytime hours as an adjunct to the usual nocturnal sleep period. Naps are most often taken as a response to drowsiness during waking hours. A nap is a form of biphasic or polyphasic sleep, where the latter terms also include longer periods of sleep in addition to one single period. Cultural attitudes toward napping during the work day vary. In many Western cultures, children and the elderly are expected to nap during the day and are provided with designated periods and locations in which to do so. In these same cultures, most working adults are not expected to sleep during the day and napping on the job is widely considered unacceptable. Other cultures (especially those in hot climates) serve their largest meals at midday, with allowance for a nap period (siesta) afterwards before returning to work.

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.