CYBERMED LIFE - ORGANIC  & NATURAL LIVING

Leukemia: Acute promyelocytic leukemia

  • Ascorbic acid does not reduce the anticancer effect of radiotherapy📎

    Abstract Title:

    Ascorbic acid does not reduce the anticancer effect of radiotherapy.

    Abstract Source:

    Biomed Rep. 2017 Jan ;6(1):103-107. Epub 2016 Nov 29. PMID: 28123717

    Abstract Author(s):

    Yoichiro Hosokawa, Ryo Saga, Satoru Monzen, Shingo Terashima, Eichi Tsuruga

    Article Affiliation:

    Yoichiro Hosokawa

    Abstract:

    The present study hypothesized that the therapeutic use of ascorbic acid (AsA) in combination with radiation may reduce therapy-related side effects and increase the antitumor effects. The aim of the study was to examine the association between the scavenged activity of AsA and the biological anticancer effect of hydroxyl (OH) radicals generated by X-ray irradiation. Cell survival, DNA fragmentation of human leukemia HL60 cells and the amount of OH radicals were investigated following X-ray irradiation and AsA treatment. The number of living cells decreased, and DNA fragmentation increased at AsA concentrations>1 mM. Electron spin resonance spectra revealed that X-ray irradiation generated OH radicals, which were scavenged by AsA at concentrations>75µM. The AsA concentration inside the cell was 75 µM when cells underwent extracellular treatment with 5 mM AsA, which significantly induced HL60 cell death even without irradiation. No increase in the number of viable HL60 cells was observed following AsA treatment with irradiation when compared to irradiation alone. In conclusion, the disappearance of the radiation anticancer effects with AsA treatment in combination with radiotherapy for cancer treatment is not a cause for concern.

  • Cancer cell cytotoxicity of extracts and small phenolic compounds from Chaga [Inonotus obliquus (persoon) Pilat].

    Abstract Title:

    Cancer cell cytotoxicity of extracts and small phenolic compounds from Chaga [Inonotus obliquus (persoon) Pilat].

    Abstract Source:

    J Med Food. 2009 Jun ;12(3):501-7. PMID: 19627197

    Abstract Author(s):

    Yuki Nakajima, Hiroshi Nishida, Seiichi Matsugo, Tetsuya Konishi

    Article Affiliation:

    Yuki Nakajima

    Abstract:

    Previously, we studied the antioxidant potential of Chaga mushroom [Inonotus obliquus (persoon) Pilat] extracts and isolated several small (poly)phenolic compounds as the major antioxidant components in the 80% methanol (MeOH) extract. In the present study, these isolated phenolic ingredients together with several other types of Chaga extracts were examined for cytotoxic effects against normal (IMR90) and cancer (A549, PA-1, U937, and HL-60) cell lines. Results revealed decoctions from both the fruiting body (FB) and sclerotium (ST) parts of Chaga, especially the ST part, showed considerable cytotoxicity toward tumor cells, but the cytotoxicity appeared to be stronger against normal cells than cancer cells. The 80% MeOH ST extract also showed the same trend. On the other hand, the 80% MeOH extract of FB showed significant cytotoxicity towards tumor cell lines without affecting normal cells, for example, the 50% lethal dose was 49.4 +/- 2.9 microg/mL for PA-1 cells versus 123.6 +/- 13.8 microg/mL for normal cells. The phenolic components isolated from the 80% MeOH extracts had markedly greater cancer cell toxicity than the extracts themselves. In particular, two out of seven compounds showed strong cytotoxicity towards several tumor cell lines without giving rise to significant cell toxicity toward normal cells. For example, the 50% lethal dose for 3,4-dihydroxybenzalacetone was 12.2 micromol/L in PA-1 cells but was 272.8 micromol/L in IMR90 cells. Fluorescence-activated cell sorting analysis further revealed these phenolic ingredients have high potentiality for apoptosis induction in PA-1 cells.

  • Induction of S phase cell arrest and caspase activation by polysaccharide peptide isolated from Coriolus versicolor enhanced the cell cycle dependent activity and apoptotic cell death of doxorubicin and etoposide, but not cytarabine in HL-60 cells.

    facebook Share on Facebook
    Abstract Title:

    Induction of S phase cell arrest and caspase activation by polysaccharide peptide isolated from Coriolus versicolor enhanced the cell cycle dependent activity and apoptotic cell death of doxorubicin and etoposide, but not cytarabine in HL-60 cells.

    Abstract Source:

    Oncol Rep. 2005 Jul;14(1):145-55. PMID: 15944782

    Abstract Author(s):

    Kenrie Pui-Yan Hui, Wai-Hung Sit, Jennifer Man-Fan Wan

    Article Affiliation:

    Department of Zoology, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, P.R. China.

    Abstract:

    Activation of the cell death program (apoptosis) is a strategy for the treatment of human cancer, and unfortunately a large number of drugs identified as cell cycle-specific agents for killing cancer cells are also toxic to normal cells. The present study demonstrates that the polysaccharide peptide (PSP) extracted from the Chinese medicinal mushroom, Coriolus versicolor, used in combination therapy in China, has the ability to lower the cytotoxicity of certain anti-leukemic drugs via their interaction with cell cycle-dependent and apoptotic pathways. Flow cytometry analysis demonstrated that pre-treatment of PSP (25-100 microg/ml) dose-dependently enhanced the cell cycle perturbation and apoptotic activity of doxorubicin (Doxo) and etoposide (VP-16), but not cytarabine (Ara-C) in human promyelocytic leukemia HL-60 cells. The antagonistic result from combined treatment with Ara-C and PSP may be caused by the removal of HL-60 cells in the G1-S boundary by PSP before exposure to Ara-C. A negative correlation between the increase in apoptotic cell population (pre-G1 peak) with the S-phase cell population expression (R2=0.998), the expression of cyclin E expression (R2=0.872) and caspase 3 activity (R2=0.997) suggests that PSP enhanced the apoptotic machinery of Doxo and VP-16 in a cell cycle-dependent manner and is mediated, at least in part, by the PSP-mediated modulation of the regulatory checkpoint cyclin E and caspase 3. This study is the first to describe the cell cycle mechanistic action of PSP and its interaction with other anticancer agents. Our data support the potential development of PSP as an adjuvant for leukemia treatment, but also imply the importance of understanding its interaction with individual anticancer agents.

  • Ultraviolet light-emitting diode irradiation-induced cell death in HL-60 human leukemia cells in vitro. 📎

    facebook Share on Facebook
    Abstract Title:

    Ultraviolet light-emitting diode irradiation-induced cell death in HL-60 human leukemia cells in vitro.

    Abstract Source:

    Mol Med Rep. 2016 Mar ;13(3):2506-10. Epub 2016 Jan 27. PMID: 26820261

    Abstract Author(s):

    Dong Xie, Yan Sun, Lingzhen Wang, Xiaoling Li, Chuannong Zang, Yunlai Zhi, Lirong Sun

    Article Affiliation:

    Dong Xie

    Abstract:

    Ultraviolet (UV) radiation is considered to be a potent cell-damaging agent in various cell lineages; however, the effect of UV light‑emitting diode (LED) irradiation on human cells remains unclear. The aim of the present study was to examine the effect of UV LED irradiation emitting at 280 nm on cultured HL‑60 human leukemia cells, and to explore the underlying mechanisms. HL‑60 cells were irradiated with UV LED (8, 15,30 and 60 J/m2) and incubated for 2 h after irradiation. The rates of cell proliferation and apoptosis, the cell cycle profiles and the mRNA expression of B‑cell lymphoma 2 (Bcl‑2) were detected using cell counting kit‑8, multicaspase assays, propidium iodide staining and reverse transcription‑quantitative polymerase chain reaction, respectively. The results showed that UV LED irradiation (8‑60 J/m2) inhibited the proliferation of HL‑60 cells in a dose‑dependent manner. UV LED at 8‑30 J/m2 induced dose‑dependent apoptosis and G0/G1 cell cycle arrest, and inhibited theexpression of Bcl‑2 mRNA, while UV LED at 60 J/m2 induced necrosis. In conclusion, 280 nm UV LED irradiation inhibits proliferation and induces apoptosis and necrosis in cultured HL‑60 cells. In addition, the cell cycle arrest at the G0/G1 phase and the downregulation of Bcl‑2 mRNA expression were shown to be involved in UV LED-induced apoptosis.

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.