CYBERMED LIFE - ORGANIC  & NATURAL LIVING

Fasting-Caloric Restriction

FoxO1 is involved in the antineoplastic effect of calorie restriction. 📎

Written by CYBERMED LIFE NEWS
Attachments:
Download this file (FoxO1 is involved in the antineoplastic effect of calorie restriction..pdf)FoxO1 is involved in the antineoplastic effect of calorie restriction..pdf[FoxO1 is involved in the antineoplastic effect of calorie restriction.]356 kB
facebook Share on Facebook
Abstract Title:

FoxO1 is involved in the antineoplastic effect of calorie restriction.

Abstract Source:

Aging Cell. 2010 Jun;9(3):372-82. Epub 2010 Mar 6. PMID: 20222901

Abstract Author(s):

Haruyoshi Yamaza, Toshimitsu Komatsu, Saori Wakita, Carole Kijogi, Seongjoon Park, Hiroko Hayashi, Takuya Chiba, Ryoichi Mori, Tatsuo Furuyama, Nozomu Mori, Isao Shimokawa

Article Affiliation:

Department of Investigative Pathology, Nagasaki University, Japan.

Abstract:

The FoxO transcription factors may be involved in the antiaging effect of calorie restriction (CR) in mammals. To test the hypothesis, we used FoxO1 knockout heterozygotic (HT) mice, in which the FoxO1 mRNA level was reduced by 50%, or less, of that in wild-type (WT) mouse tissues. The WT and HT mice were fed ad libitum (AL) or 30% CR diets from 12 weeks of age. Aging- and CR-related changes in body weight, food intake, blood glucose, and insulin concentrations were similar between the WT and HT mice in the lifespan study. The response to oxidative stress, induced by intraperitoneal injection of 3-nitropropionic acid (3-NPA), was evaluated in the liver and hippocampus at 6 months of age. Several of the selected FoxO1-target genes for cell cycle arrest, DNA repair, apoptosis, and stress resistance were up-regulated in the WT-CR tissues after 3-NPA injection, while the effect was mostly diminished in the HT-CR tissues. Of these gene products, we focused on the nuclear p21 protein level in the liver and confirmed its up-regulation only in the WT-CR mice in response to oxidative stress. The lifespan did not differ significantly between the WT and HT mice in AL or CR conditions. However, the antineoplastic effect of CR, as indicated by reduced incidence of tumors at death in the WT-CR mice, was mostly abrogated in the HT-CR mice. The present results suggest a role for FoxO1 in the antineoplastic effect of CR through the induction of genes responsible for protection against oxidative and genotoxic stress.


We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.