CYBERMED LIFE - ORGANIC  & NATURAL LIVING

Exercise Cycling

Metabolic and Performance Effects of Yerba Mate on Well-trained Cyclists.

Written by CYBERMED LIFE NEWS
facebook Share on Facebook
Abstract Title:

Metabolic and Performance Effects of Yerba Mate on Well-trained Cyclists.

Abstract Source:

Med Sci Sports Exerc. 2018 Apr ;50(4):817-826. PMID: 29117073

Abstract Author(s):

Jose L Areta, Ingvild Austarheim, Helle Wangensteen, Carlo Capelli

Article Affiliation:

Jose L Areta

Abstract:

INTRODUCTION: Yerba Mate (YM) is a South American plant, rich in polyphenols, saponins, and xanthines, of growing scientific interest because of its metabolic effects. YM has been shown to increase fat utilization during exercise in untrained humans, but its effects on well-trained individuals during exercise are unknown.

METHODS: We characterized metabolic and physical performance effects of YM in 11 well-trained male cyclists. In a double-blind crossover design, participants ingested 5 g of YM or placebo (PL; maltodextrin) daily for 5 d and 1 h before experimental trials.

RESULTS: Ergometer-based tests included a submaximal step test (SST) at 30%-80% of V˙O2max (6 × 5-min stages), followed by a cycloergometer-based time trial (TT) test to complete mechanical work (~30 min; n = 9). Before and during tests, blood and respiratory gas samples were collected. YM increased resting plasma adrenaline concentration (P = 0.002), and fat utilization by 23% at 30%-50% V˙O2max versus PL (Glass effect sizes (ES) ± 95% confidence interval (CI), 0.8 ± 0.55) correlating strongly with post-SST plasma (glycerol; r = 0.758). Treatment effects on rates of perceived exertion, heart rate, and gross efficiency were unclear during SST. Respiratory exchange ratioduring TT indicated carbohydrate dependence and did not differ between treatments (PL, 0.95 ± 0.03 (SD); YM, 0.95 ± 0.02). TT performance showed a small (ES = 0.38 ± 0.33) but significant (P = 0.0278) improvement with YM (PL, 30.1 ± 1.8 min (SD); YM, 29.4 ± 1.4 min; 2.2% ± 2% (95% CI)), with an average increase of 7-W power output (ES = 0.2 ± 0.19; P = 0.0418; 2.3% ± 2% (95% CI)) and 2.8% V˙O2 (P = 0.019). Pacing displayed lower power output after 30% of total TT workload in PL vs YM.

CONCLUSIONS: YM increased fat utilization during submaximal exercise and improved TT performance, but performance-enhancement effect was unrelated to measures of substrate metabolism during maximal exercise.


We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.