Therapeutic Actions Infrared Light

NCBI pubmed

Extracellular polymeric substance production in high rate algal oxidation ponds.

Extracellular polymeric substance production in high rate algal oxidation ponds. Water Sci Technol. 2017 Nov;76(10):2647-2654 Authors: Jimoh TA, Cowan AK Abstract Integrated algal pond systems (IAPSs) combine anaerobic and aerobic bioprocesses to affect sewage treatment. The present work describes the isolation and partial characterisation of soluble extracellular polymeric substances (EPSs) associated with microalgal bacterial flocs (MaB-flocs) generated in high rate algal oxidation ponds (HRAOPs) of an IAPS treating domestic sewage. Productivity and change in MaB-flocs concentration, measured as mixed liquor suspended solids (MLSS) between morning (MLSSAM) and evening (MLSSPM) were monitored and the substructure of the MaB-flocs matrix examined by biochemical analysis and Fourier transform infrared spectroscopy (FT-IR). Results show that MaB-flocs from HRAOPs are assemblages of microorganisms produced as discrete aggregates as a result of microbial EPS production. Formation and accumulation of the EPS was stimulated by light. Analysis by FT-IR revealed characteristic carbohydrate enrichment of these polymeric substances. In contrast, FT-IR spectra of EPSs from dark-incubated MaB-flocs confirmed that these polymers contained increased aliphatic and aromatic functionalities relative to carbohydrates. These differences, it was concluded, were due to dark-induced transition from phototrophic to heterotrophic metabolism. The results negate microalgal cell death as a contributor to elevated chemical oxygen demand of IAPS treated water. PMID: 29168704 [PubMed - in process]

Nitrate-assisted photocatalytic efficiency of defective Eu-doped Pr(OH)3 nanostructures.

Nitrate-assisted photocatalytic efficiency of defective Eu-doped Pr(OH)3 nanostructures. Phys Chem Chem Phys. 2017 Nov 23;: Authors: Aškrabić S, Araújo VD, Passacantando M, Bernardi MIB, Tomić N, Dojčinović B, Manojlović D, Čalija B, Miletić M, Dohčević-Mitrović ZD Abstract Pr(OH)3 one-dimensional nanostructures are a less studied member of lanthanide hydroxide nanostructures, which recently demonstrated an excellent adsorption capacity for organic pollutant removal from wastewater. In this study, Pr1-xEux(OH)3 (x = 0, 0.01, 0.03, and 0.05) defective nanostructures were synthesized by a facile and scalable microwave-assisted hydrothermal method using KOH as an alkaline metal precursor. The phase and surface composition, morphology, vibrational, electronic and optical properties of the as-prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma optical emission spectrometry (ICP-OES), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), Raman, infrared (IR), photoluminescence (PL), and diffuse reflectance spectroscopy (DRS). It was deduced that the incorporation of Eu(3+) ions promoted the formation of oxygen vacancies in the already defective Pr(OH)3, subsequently changing the Pr(OH)3 nanorod morphology. The presence of KNO3 phase was registered in the Eu-doped samples. The oxygen-deficient Eu-doped Pr(OH)3 nanostructures displayed an improved photocatalytic activity in the removal of reactive orange (RO16) dye under UV-vis light irradiation. An enhanced photocatalytic activity of the Eu-doped Pr(OH)3 nanostructures was caused by the synergetic effect of oxygen vacancies and Eu(3+) (NO3(-)) ions present on the Pr(OH)3 surface, the charge separation efficiency and the formation of the reactive radicals. In addition, the 3% Eu-doped sample exhibited very good adsorptive properties due to different morphology and higher electrostatic attraction with the anionic dye. Pr1-xEux(OH)3 nanostructures with the possibility of tuning their adsorption/photocatalytic properties present a great potential for wastewater treatment. PMID: 29167854 [PubMed - as supplied by publisher]


ESTABLISHING BRDF CALIBRATION CAPABILITIES THROUGH SHORTWAVE INFRARED. Proc SPIE Int Soc Opt Eng. 2017;10402: Authors: Georgiev GT, Butler JJ, Thome K, Cooksey C, Ding L Abstract Satellite instruments operating in the reflective solar wavelength region require accurate and precise determination of the Bidirectional Reflectance Distribution Functions (BRDFs) of the laboratory and flight diffusers used in their pre-flight and on-orbit calibrations. This paper advances that initial work and presents a comparison of spectral Bidirectional Reflectance Distribution Function (BRDF) and Directional Hemispherical Reflectance (DHR) of Spectralon, a common material for laboratory and on-orbit flight diffusers. A new measurement setup for BRDF measurements from 900 nm to 2500 nm located at NASA Goddard Space Flight Center (GSFC) is described. The GSFC setup employs an extended indium gallium arsenide detector, bandpass filters, and a supercontinuum light source. Comparisons of the GSFC BRDF measurements in the shortwave infrared (SWIR) with those made by the National Institute of Standards and Technology (NIST) Spectral Tri-function Automated Reference Reflectometer (STARR) are presented. The Spectralon sample used in this study was 2 inch diameter, 99% white pressed and sintered Polytetrafluoroethylene (PTFE) target. The NASA/NIST BRDF comparison measurements were made at an incident angle of 0° and viewing angle of 45°. Additional BRDF data not compared to NIST were measured at additional incident and viewing angle geometries and are not presented here. The total combined uncertainty for the measurement of BRDF in the SWIR range made by the GSFC scatterometer is less than 1% (k = 1). This study is in support of the calibration of the Radiation Budget Instrument (RBI) and Visible Infrared Imaging Radiometer Suit (VIIRS) instruments of the Joint Polar Satellite System (JPSS) and other current and future NASA remote sensing missions operating across the reflected solar wavelength region. PMID: 29167593 [PubMed]